4-CHANNEL BTL DRIVE FOR CD PLAYERS

DESCRIPTION

The UTC UA9392 is a 4-channel BTL driver for CD plsyer motors and actuators. It has an internal primary filter, and can be directly connected (without attached components) to the servo PWM output of all drivers other than the spindle driver.

FEATURES

*PWM input is filtered by the internal primary filter, eliminating the need for attached resistors and capacitors, thereby helping reduce the number of components. Resistor and capacitor time constant can be changed with attached components.

*Internal mute circuit.

*Thermal shutdown circuit is contained.

*Level-shift circuit is contained.

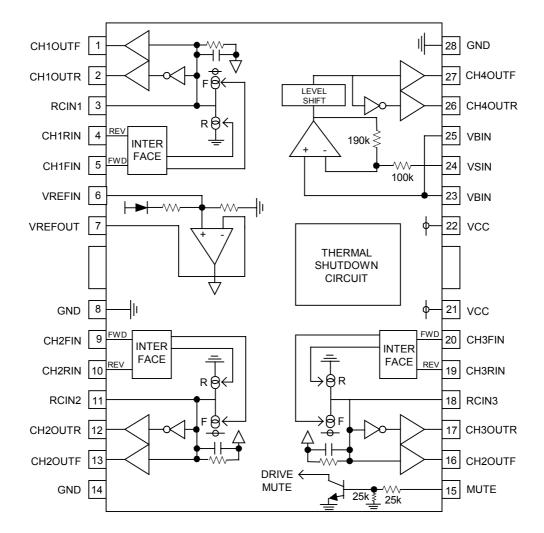
APPLICATIONS

CD players, CD-ROM drives.

PIN CONFIGURATION CH40UT R CH3OUT R ш CH3OUT F CH3 FIN CH3 RIN CH40UT RC IN3 MUTE VBIN GND VSIN VBIN Vcc 2 CC 23 21 28 27 26 25 24 20 19 17 16 15 22 18 1 2 3 4 5 6 7 9 10 11 12 14 8 13 CH1OUT F CH2 RIN CH10UT R RC IN1 CH1 RIN CH2OUT F CH1 FIN VREF OUT GND CH2 FIN RC IN2 CH2OUT R GND **VREF IN** UNISONIC TECHNOLOGIES CO. LTD

UTC

QW-R109-010 A


PIN DESCR	RIPTIONS			
PIN NO.	PIN NAME	DESCRIPTION		
1	CH1OUT F	Drive channel 1 forward output		
2	CH1OUT R	Drive channel 1 reverse output		
3	RC IN1	Connect to attach resistor/capacitor(1)		
4	CH1 RIN	Drive channel 1 reverse input		
5	CH1 FIN	Drive channel 1 forward input		
6	VREF IN	Internal reference amplifier input		
7	VREF OUT	Internal reference amplifier output		
8	GND	Ground for internal reference and internal power circuit		
9	CH2 FIN	Drive channel 2 forward input		
10	CH2 RIN	Drive channel 2 reverse input		
11	RC IN2	Connect to attach resistor/capacitor(2)		
12	CH2OUT R	Drive channel 2 reverse output		
13	CH2OUT F	Drive channel 2 forward output		
14	GND	Ground for internal reference and internal power circuit		
15	MUTE	Drive mute control input		
16	CH3OUT F	Drive channel 3 forward output		
17	CH3OUT R	Drive channel 3 reverse output		
18	RC IN3	Connect to attach resistor/capacitor(3)		
19	CH3 RIN	Drive channel 3 reverse input		
20	CH3 FIN	Drive channel 3 forward input		
21	Vcc	Power supply		
22	Vcc	Power supply		
23	VBIN	Drive channel 4 bias input*		
24	VSIN	Drive channel 4 input		
25	VBIN	Drive channel 4 bias input*		
26	CH4OUT R	Drive channel 4 reverse output		
27	CH4OUT F	Drive channel 4 forward output		
28	GND	Ground for internal reference and internal power circuit		

*Pin23 and Pin25 are shorted internally.

UTC UNISONIC TECHNOLOGIES CO. LTD

QW-R109-010,A

BLOCK DIAGRAM

UTC UNISONIC TECHNOLOGIES CO. LTD 3

ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
Power supply voltage	Vcc	16	V
Power dissipation	Pd	1.6 * ¹	W
Operating temperature	Topr	-30 ~ +80	°C
Storage temperature	Tstg	-55 ~ +150	°C

*1: Reduce by 13.6mW for each increase in Ta of 1°C over 25°C, When mounted on a 50 * 50 * 1.0 mm phenol paper PCB.

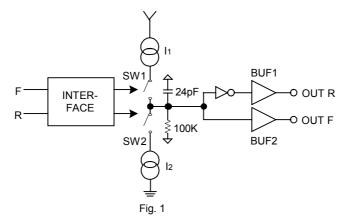
RECOMMENDED OPEATING CONDITIONS(Ta=25°C)

PARAMETER	SYMBOL	RATING	UNIT
Supply voltage	Vcc	5 ~ 10 * ²	V

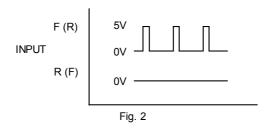
*2 Set the power supply voltage according to power dissipation.

ELECTRICAL CHARACTERISTICS(Ta=25°C,Vcc=8V,f=1kHz,RL=8 Ω, unless otherwise specified)

ITEMS	SYMBOL	TEST CONDITIONS	MIN	TYP.	MAX	UNIT
Quiescent current	lq	No load	5	12	18	mA
Bias pin voltage	VBIAS		3.4	3.68	4.00	V
Bias pin voltage reguration	∆Vbias	1mA source, sink	-30		30	mV
Mute-off voltage	VMOFF		2.0			V
Mute-on voltage	VMON				0.5	V
<drive(other spindle)="" than=""></drive(other>						
Input high level voltage	Vін		2.4			V
Input low level voltage	VIL				0.5	V
Input high level current	Iн	VIN=5V	170	310	450	μA
Input low level current	ΙL	VIN=0V	-10		0	μA
Output voltage,offset	Voo	(Same for spindle)	-30		30	mV
Output high level voltage	Vohd	FIN=5V, RIN=0V	4.90	5.40		V
Output low level voltage	Vold	FIN=0V, RIN=5V		1.50	2.00	V
Constant current	IC ONST		14	22	30	μA
Internal integral capacitance	С			24		рF
Current pulse rise time 1	\triangle tr	At startup		0.08	1	μ S
Current pulse fall time 2	∆tf	At shutdown		0.55	1	μ s
Current pulse time differential	∆tr-f		-160		160	μ s
Driver linearity	LIN	$V_{IN}=V_{REF}\pm0.5,1,1.5^{*1}$	90	100	110	%
Ripple rejection	RR	VIN=100mVrms,100Hz		70		dB
<spindle driver=""></spindle>						
Input bias current	Ів			10	300	nA
Synchronous input voltage	VICM		1.6		6.4	V
Max.output voltage high	Vohd		4.90	5.40		V
Max.output voltage low	Vold			1.50	2.00	V
Voltage gain	Gvc		8.0	10.5	13	dB
Slew rate	SR			2		V / µ s
Ripple rejection	RRs	VIN=100mVrms, 100Hz		70		dB


*1: if Vo=V01 when VIN=VREF±0.5V,Vo=V02 when VIN=VREF±1.0V,and Vo=V03 when VIN=VREF±1.5V,then LIN=(V03 * V02)/(V02 * V01) *100%.

UTC UNISONIC TECHNOLOGIES CO. LTD


QW-R109-010,A

CIRCUIT OPERATION

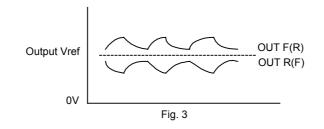
(1) Fig. 2 shows the inputs from the digital servo IC for CH1-CH3 drivers(all drivers except the spindle).SW1 is on when the forward input signal(HIGH level, over 2.4V) is present,SW2 I on when the reverse input signal is present (Fig. 1) The constant current (I1) at this time enters the RC and generates an integral waveform based on the duty of the input waveform. The BTL is output from BUF1 and BUF2 (Fig.3).

To maintain the HIGH level with forward (or reverse) in-put, the DC voltage generated at point A is: $I_1 \times R = 2.5V$ (reverse : - 2.5V)

This is the voltage generated relative VREF. The setting is such that a voltage differential of 5V is generated be-tween output pins. The time constant is:

$$R \times C = 2.4 \,\mu$$
 sec

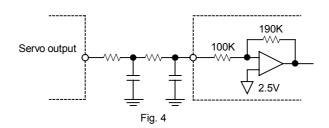
This can be increased by inserting a capacitor between point A (pin3,11and 18) and VREF •The constant current (Iconst) given in the electrical characteristics refers to I1 and I2 in Fig.1.


(2) CH4 driver (spindle driver) Pins 23 and 25 are shorted inside the IC.Bias amplitudes are the primarytype of inputs assumed

inpute decai						
F	R	SW2	SW1			
L	L	OFF	OFF			
L	Н	OFF	ON			
Н	L	ON	OFF			
Н	Н	OFF	OFF			

H: 2.4V Max. L: 0.5V Min.

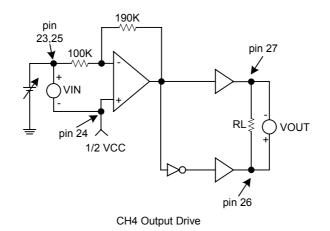
UNISONIC TECHNOLOGIES CO. LTD

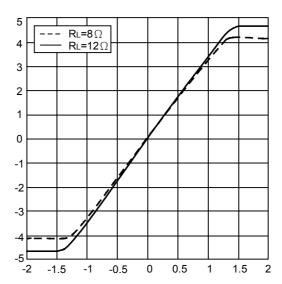

QW-R109-010,A

The level shift circuit converts the pre-stage amplifier output (centered on the bias level and impressed on pins 23 and 25) to positive and negative amplitudes centered on VREF. The level shift circuit's output is BTL-output from the buffer amplifier.

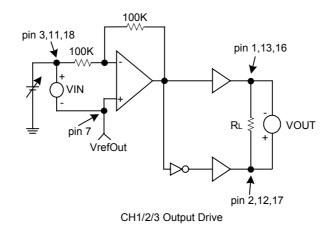
Because of the high input impedance, the IC is designed to accommodate filter comprising attached resistors and capacitors.

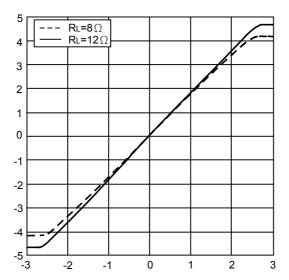
(Example) For secondary filters

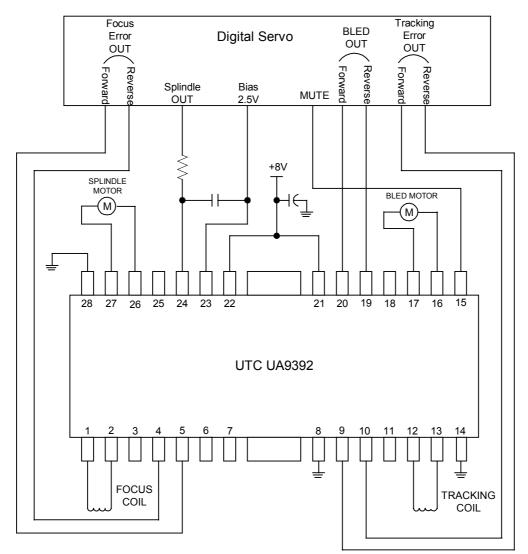

OPERATION NOTES

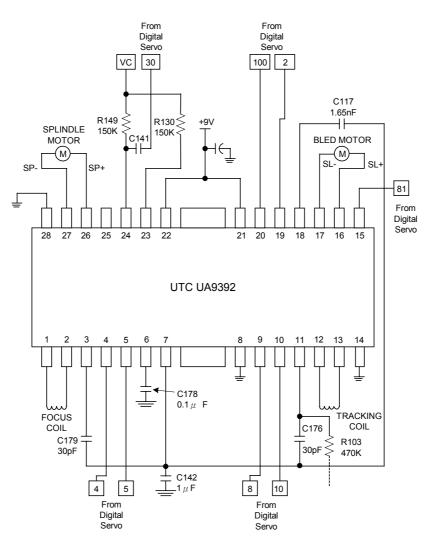

- (1) The UTC UA9392 has an internal thermal shutdown circuit. Output current is muted when the chip temperature exceeds 180°C (typically).
- (2) The output current can also be muted by lower the mute pin (pin 15) voltage below 0.5V.
- (3) All four driver output channels are muted during thermal shutdown, muting and a drop in bias pin voltage. No other components are muted.

UTC UNISONIC TECHNOLOGIES CO. LTD

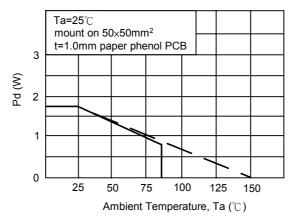

QW-R109-010,A


I/O ELECTRICAL CHARACTERISTICS


UTC UNISONIC TECHNOLOGIES CO. LTD 7


UTC UNISONIC TECHNOLOGIES CO. LTD 8

APPLICATION CIRCUIT


UTC UNISONIC TECHNOLOGIES CO. LTD 9

VCD PLAYER MOTOR DRIVER CIRCUIT

UTC UNISONIC TECHNOLOGIES CO. LTD 10

POWER DISSIPATION

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

UTC UNISONIC TECHNOLOGIES CO. LTD 11